
PHYSICAL REVIEW B 86, 214502 (2012)

Phase diagram of Josephson junction between s and s± superconductors in the dirty limit
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The s± state in which the order parameter has different signs in different bands is a leading candidate for the
superconducting state in the iron-based superconductors. We investigate a Josephson junction between s and s±
superconductors within microscopic theory. Frustration, caused by interaction of the s-wave gap parameter with
the opposite-sign gaps of the s± superconductor, leads to nontrivial phase diagram. When the partial Josephson
coupling energy between the s-wave superconductor and one of the s± bands dominates, s-wave gap parameter
aligns with the order parameter in this band. In this case, the partial Josephson energies have different signs
corresponding to signs of the gap parameters. In the case of strong frustration, corresponding to almost complete
compensation of the total Josephson energy, a nontrivial time-reversal-symmetry breaking (TRSB) state realizes.
In this state, all gap parameters become essentially complex. As a consequence, this state provides realization
for so-called φ-junction with finite phase difference in the ground state. The width of the TRSB state region
is determined by the second harmonic in Josephson current, ∝sin(2φ), which appears in the second order with
respect to the boundary transparency. Using the microscopic theory, we establish a range of parameters where
different states are realized. Our analysis shows insufficiency of the simple phenomenological approach for
treatment of this problem.
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I. INTRODUCTION

The discovery of superconducting iron pnictides and
chalcogenides is one of the most remarkable recent achieve-
ments in the condensed-matter physics. A rapid progress in
characterization of these materials and development of theoret-
ical understanding has been reflected in several reviews.1,2 The
key feature of these semimetallic materials is the multiple-band
structure, the Fermi surface is composed of several electron
and hole pockets located near different points of the Brillouin
zone.

Superconductivity in the iron-based materials is likely to
be unconventional. There is a theoretical consensus that the
electron-phonon interaction is not strong enough to explain
high transition temperatures.3 In several theoretical papers,
it was suggested that superconductivity is mediated by spin
fluctuations leading to an unusual superconducting state in
which the order parameter has opposite signs in the electron
and hole bands (s± state).4–8 Experimental verification of this
theoretical proposal became one of the major challenges in
the field. Probing the relative sign of the order parameter in
different bands is not trivial and the structure of supercon-
ducting state has not been unambiguously established yet by
experiment, even though several properties consistent with the
s± state have been revealed. An extensive critical review of
experiments both in favor and against the realization of the s±
state in iron based superconductors has been done recently in
Ref. 2. Shortly, the main experiments supporting the s± state
include (i) observation by the inelastic neutron scattering of the
resonant magnetic mode below the superconducting transition
temperature.9 Such a mode is expected for the superconductors
with the sign-changing order parameter. This mode was
observed in almost all compounds and its frequency scales
approximately proportional to the transition temperature.
(ii) Microscopic coexistence of antiferromagnetism and su-
perconductivity demonstrated in some compounds within a
narrow doping range, most clearly in Ba[Fe1−xCox]2As2.10,11

For the case of the conventional s++ state in which the order
parameter has the same sign in all bands, the spin-density
wave (SDW) has a strong pair-breaking effect on the bands
connected with the SDW ordering wave vector. Such direct
pair breaking is absent if the order parameter in such bands has
opposite signs meaning that the SDW is much more compatible
with the s± state than with s++ one.12 (iii) The magnetic field
dependence of the quasiparticle interference peaks studied by
scanning tunneling spectroscopy in FeSexTe1−x .13

On the other hand, discovery of the iron selenide com-
pounds without hole band and with rather high transition
temperatures, up to 30 K,14 questioned universality of the s±
state for all iron-based superconductors. Also, it occurs that
the iron based superconductors are quite stable with respect
to disorder. As for the s± state the interband scattering is pair
breaking, stability with respect to disorder is frequently used
as an argument against this state. Therefore the structure of
the order parameter in the iron-based superconductors is an
unresolved issue.

One of the ways to probe unconventional supercon-
ductivity is to study Josephson junctions and proximity
effects with conventional superconductors. In the case of
contact between s-wave and s± superconductors, frustration,
caused by interaction of the s-wave gap parameter with the
opposite-sign gaps of s± superconductor leads to several
anomalous features which were recognized and studied in
several theoretical papers.16–24 For example, proximity with
s± superconductor induces corrections to the density of states
of s-wave superconductor which, in principle, allow to identify
the signs of the order parameter in different bands of s±
superconductor.22 Particularly interesting is a possibility of
a time-reversal symmetry breaking (TRSB) state16,19,21,23 in
the parameter range where the partial Josephson coupling
energies between s-superconductor and different s± bands
almost exactly compensate each other. Existing experiments
on Josephson junctions between iron-based and conventional
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superconductors have been reviewed in Ref. 25. No anomalous
features, however, have been reported so far.

For experimental realization of the TRSB state, it is
important to establish range of parameters where such state
can be expected. Up to now, this state was studied using
mostly phenomenological models, which are not rigorously
justified. The purpose of this paper is to develop microscopic
description of transition between the aligned and TRSB states.
The paper is organized as follows. In Sec. II, we present
general consideration of the transition between the aligned and
TRSB state in the region where the partial Josephson energies
almost compensate each other. It is known that the width of
the TRSB region is determined by the second harmonic of the
Josephson current, which in our situation appears in the second
order with respect to the coupling between superconductors.
In Sec. III, we present the microscopic equations and boundary
conditions describing the contact between s-wave and s±
superconductors in dirty limit considered in this paper. In
Sec. IV, we consider corrections to the Green’s functions and
gap parameters induced by the interface. Computation details
of these corrections are presented in Appendix. The proximity-
induced corrections to the Green’s function determine the
second harmonic in the Josephson current, which is considered
in Sec. V. We present both general formulas for different
contributions to the second harmonic and simple analytical
results for the most relevant limiting cases. We also reveal the
dominating contribution to the second harmonic. Using these
results, we analyze in Sec. VI the width of the TRSB region and
its shrinking with increasing temperature. Finally, in Sec. VII,
we consider proximity-induced corrections to the density of
states of the s-wave superconductor within the TRSB region.

II. GENERAL CONSIDERATION OF THE TRANSITION
REGION IN THE WEAK-COUPLING CASE

We consider the Josephson junction between s-wave and
two-band s± superconductors, see Fig. 1(left). In the weak-
coupling limit, this system is characterized by the partial
Josephson coupling energies between s-superconductor and
s± bands, EJα with α being the band index. Typically, the
s-wave gap parameter aligns along the s± gap with which it
has larger coupling energy. In this aligned state, the partial
Josephson coupling energies are positive and negative for
the aligned and antialigned bands correspondingly. Nontrivial
behavior is expected in the case of strong frustration when the

FIG. 1. (Color online) (Left) A Josephson junction between s and
s± superconductors with the gap parameters for a general complex
state. (Right) Generic phase diagram of such Josephson junction.

total Josephson energy is close to zero. This happens when
absolute values of the Josephson energies for the opposite-
sign bands are close, |EJ1| ≈ |EJ2|. Phenomenologically,
the phase diagram can be described by the model of the
frustrated Josephson junction considered in several papers,16

which provides correct qualitative description. However, in
general, this model does not describe the system quantitatively,
because, ignoring the fermionic degrees of freedom in the s±
superconductor, it does not treat correctly its interband energy.
For the weak-coupling regime, however, the transitional region
between the two aligned states can be treated following the
same reasoning as for the transition between 0 and π junctions,
see, e.g., Refs. 18 and 26. In the vicinity of transition, the linear
approximation for the coupling between the superconductors
becomes insufficient and the total Josephson energy can be
represented as

E(φ) = (EJ1 − EJ2)(1 − cos φ) + E
(2)
J

2
(1 − cos 2φ), (1)

where φ is the phase difference between �s and �1 and the
term E

(2)
J appears in the second order with respect to the

boundary transparency. This corresponds to the Josephson
current

j (φ) = (jJ1 − jJ2) sin φ + j
(2)
J sin 2φ (2)

with jJα = (2πc/�0)EJα . The intermediate TRSB state exists
only if the sign of the second-harmonic is negative E

(2)
J ,j

(2)
J <

0. In this case in the region |jJ1 − jJ2| < 2j
(2)
J , the ground-

state phase difference is given by

cos φ0 = (jJ1 − jJ2)/
(
2
∣∣j (2)

J

∣∣). (3)

It smoothly transforms between 0 and π when the difference
jJ1 − jJ2 changes from 2|j (2)

J | to −2|j (2)
J |. Therefore the

TRSB state also provides realizations of so-called φ junction27

in which a finite phase difference exists in ground state leading
to several anomalous properties. In the case E

(2)
J ,j

(2)
J > 0 the

transition between the two aligned states is of the first order
and the TRSB state is not realized.

The simplest phenomenological description is the frustrated
Josephson junction model in which the tilt of the relative
phase between two gap parameters of s± superconductors is
described by the energy E12 cos(θ1 − θ2). In this model, the
amplitude of the second harmonic is given by

j
(2)
J = −j̄J ĒJ /(2E12)

with j̄J = (jJ1 + jJ2)/2 and ĒJ = (EJ1 + EJ2)/2. Our fur-
ther microscopic analysis shows that this result is only valid
for a special situation of very weak coupling between the
bands of the s± superconductor. We will compute the second
harmonic in general case within microscopic approach.

III. EQUATIONS AND BOUNDARY CONDITIONS

In this section, we write down equations and boundary
conditions for the simple microscopic model describing a
“sandwich,” consisting of slabs of two-band s± superconductor
with thickness d± and a single-band s-wave superconductor
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with thickness ds , as shown on Fig. 1. We denote the bulk
critical temperatures of the s-wave and s± superconductors as
T s

c and Tc, respectively. The x =0 plane coincides with the
interface between the superconductors. The main assumption
of our description is that both superconductors are in dirty
limit but the interband scattering in the s± superconductor is
negligible. In this case, bulk superconductivity is described by
quasiclassical Usadel equations28 with boundary conditions
derived in Ref. 29. The conventional proximity effects were
extensively explored within this approach in Ref. 30. This
description was later generalized to conventional two-band
superconductors in Ref. 31. This model have been already used
to describe some anomalous properties of the s/s± interface in
Ref. 22.

Both superconductors are described by the gap parameters
�(x) and the impurity averaged Green’s functions, which have
regular and anomalous components, G(x,ω) and F (x,ω), with
G2 + |F |2 = 1, where ω = 2πT (n + 1/2) are the Matsubara
frequencies. In the following, we will use subscript “s” for the
s-wave superconductor and subscript “α” for the α band of the
s± superconductor and skip subscripts in relations applicable
for both superconductors. Further, we employ so-called �

parametrization30,31 in which the function � = ωF/G is
used instead of F . In this case G = ω/

√
ω2 + |�|2. For

the s-wave superconductor (−ds < x < 0), the equations for
the Green’s functions Gs and �s and the self-consistency
equation are

Ds

2ωGs

d

dx

(
G2

s

d�s

dx

)
− �s = −�s, (4a)

2πT
∑
ω>0

(
�s√

ω2 + |�s |2
− �s

ω

)
+ �s ln

T s
c

T
= 0. (4b)

Correspondingly, for the s±-superconductor, 0 < x < d± we
have

Dα

2ωGα

d

dx

(
G2

α

d�α

dx

)
− �α = −�α, (5a)

2πT
∑

β,ω>0

λαβ

�β√
ω2 + |�β |2 = �α, (5b)

where λαβ is the coupling-constants matrix and α, β are the
band indices. In Eq. (5a), we neglected the interband impurity
scattering. For the case of s± superconductor, we consider here
�1�2 < 0. This is realized when λ12,λ21 < 0. The diffusion
coefficients D{s,α} are related to the conductivities σ{s,α} as
σ{s,α} = e2ν{s,α}D{s,α}, where ν{s,α} are the normal densities of
states (DoS). The ratio of the off-diagonal coupling constants is
given by the ratio of partial normal DoSs, λαβ/λβα = νβ/να .
It is convenient to normalize all energy parameters (ω and
gaps on both sides) to the same scale πTc. We also introduce
the coherence lengths ξα = √

Dα/2πTc and ξ ∗
s = √

Ds/2πTc

(note that ξ ∗
s is related to the bulk coherence length of the

s-wave superconductor by ξs = ξ ∗
s

√
Tc/T s

c ).
The bulk equations have to be supplemented with the

boundary conditions at the interface separating two super-
conductors. These conditions relate the Green’s functions
and their derivatives at the interface and can be written

as29,31

ξ ∗
s Gs

d�s

dx
=

∑
α

Gα

γ̃Bα

(�α − �s), (6a)

ξαGα

d�α

dx
= − Gs

γBα

(�s − �α), (6b)

for x = 0, where α is the band index. Here the coupling
parameters, γ̃Bα and γ̃Bα are proportional to the partial
boundary resistances RBα ,

γ̃Bα = RBα

ρsξ ∗
s

, γBα = RBα

ραξα

, (7)

where ρ{s,α} =1/σ{s,α} are the bulk resistivities. We will also
use the ratios of these parameters

γα = γ̃Bα

γBα

= ραξα

ρsξ ∗
s

, (8)

that are bulk parameters characterizing the relative “metalic-
ity” of the s-wave superconductor and α band. In particular,
large γα implies that the s-wave material is more metallic than
the α band on the s± side. The parameters γα , λαβ , and ξα

are not fully independent, the ratio of γα obeys the following
relation:

γ1

γ2
= ν2ξ2

ν1ξ1
= λ12ξ2

λ21ξ1
. (9)

The conditions at the external boundaries are �′
s(−ds) = 0

and �′
α(d±) = 0.

The supercurrent flowing through the interface between
the s-wave superconductor and α band is determined by the
Green’s functions �{s,α} at the interface as

jα = A0

γ̃Bα

2πT
∑
ω>0

Im[�∗
s �α]√

ω2 + |�s |2
√

ω2 + |�α|2
(10)

with A0 = 1/(eρsξ
∗
s ). Substitution of the zero-order approx-

imation for the Green’s functions, �{s,α} ≈�{s,α}0, gives
the well-known Ambegaokar-Baratoff result32 for the partial
Josephson currents proportional to sin φ with different signs
corresponding to the signs of �α0. Here and below, we assume
for definiteness that φ is the phase shift between �s0 and �10.
To find the sin(2φ) term in the Josephson current, one has to go
beyond the zero-order approximation and evaluate corrections
to the Green’s functions due to the interface. We discuss these
corrections in the next section.

IV. PROXIMITY CORRECTIONS IN THE
WEAK-COUPLING LIMIT

In the case of weak coupling between the s and s±
superconductors, γBα �1, the contact-induced corrections to
the gaps and Green’s function can be treated as small perturba-
tions, �{s,α}(x) = �{s,α}0 + �̃{s,α}(x), �{s,α}(x) = �{s,α}0 +
�̃{s,α}(x). As a zero-order approximation, we consider a
general complex case with a finite phase difference φ between
the bulk gap parameters �10 and �s0, see Fig. 2. For the
aligned states such perturbative calculation has been reported
in Ref. 22. Without loss of generality, we assume �s0 to
be real. The small corrections �̃{s,α}(ω,x) and �̃{s,α}(x) can
be computed analytically in the linear order with respect to
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1/γBα . Similar calculation for several types of junctions using
somewhat different approach has been done in Ref. 33. The
details of these derivations are described in Appendix. In the
TRSB state, the solution for corrections exists only if the
partial Josephson energies in the linear approximation exactly
compensate each other, EJ1 = EJ2. Here, EJα are related
to the gaps and boundary resistance RBα by the standard
expression

EJ,α = h̄

2e2Rα
B

2πT
∑
ω>0

�s0|�α0|√
ω2+�2

s0

√
ω2+|�α0|2

. (11)

This also means that the total Josephson current flowing
through the boundary is always zero in the ground state.
The corrections can be presented in the form of Fourier
expansions. For the s-wave superconductor, �̃s(ω,x)=∑∞

m=0 �̃s,m(ω) cos kmx, �̃s(x)=∑∞
m=0 �̃s,m cos kmx with

km =mπ/ds . The Fourier components of the Green’s functions

computed in Appendix are given by

�̃s,m = �̃s,m

1 + ξ 2
s,ωk2

m

+ (2 − δm)ξ 2
s,ω/(dsξ

∗
s )

1 + ξ 2
s,ωk2

m

×
∑

α

√
ω2 + �2

s0√
ω2 + |�α0|2

�α0 − �s0

γ̃Bα

, (12)

where ξ 2
s,ω = ξ 2

s,��s0/

√
ω2 + �2

s0, ξ 2
s,� = Ds/(2�s0), and

δm = 1(0) for m = 0(m > 0). Here, the first (bosonic) term
is induced by the correction to the gap parameter and the
second (fermionic) term is the direct response to the boundary
perturbation. In the complex state, the responses of the gap
parameter are different in the amplitude and phase channels.
As �s0 is selected real, these channels correspond to the real
and imaginary parts of the gap correction, �̃s = �̃R

s + i�̃I
s .

The Fourier components of �̃R
s and �̃I

s computed in Appendix
can be presented as

�̃R
s,m = 2πT

Za
s,m

∑
α,ω>0

ω2(
ω2 + �2

s0

)√
ω2 + |�α0|2

(2 − δm)ξ 2
s,�

/(
dsξ

∗
s

)
√

ω2 + �2
s0

/
�s0 + (πmξs,�/ds)2

Re(�α0) − �s0

γ̃Bα

,

with Za
s,m = 2πT

∑
ω>0

1(
ω2 + �2

s0

)3/2

[
�2

s0 + ω2(πmξs,�/ds)2√
ω2 + �2

s0

/
�s0 + (πmξs,�/ds)2

]
, (13a)

�̃I
s,m = 2πT

Z
φ
s,m

∑
α,ω>0

2ξ 2
s,�

/
(dsξs)√

ω2 + �2
s0

/
�s0 + (πmξs,�/ds)2

1√
ω2 + |�α0|2

Im(�α0)

γ̃Bα

,

with Zφ
s,m = 2πT

∑
ω>0

1√
ω2 + �2

s0

(πmξs,�/ds)2√
ω2 + �2

s0

/
�s0 + (πmξs,�/ds)2

. (13b)

For the s± superconductor the corresponding Fourier series
are �̃α = ∑∞

m=0 �̃α,m cos qmx, �̃α = ∑∞
m=0 �̃α,m cos qmx

FIG. 2. (Color online) Illustration of the bulk gap parameters �s0

and �α0 and interface-induced corrections to the average s± gaps
�̃α for a general TRSB state. The gap parameters are presented as
vectors in the complex plane. Decompositions of �s0 and �̃α into the
amplitude and phase components are also illustrated.

with qm = mπ/d±. Detailed derivations of the Fourier com-
ponents are presented in Appendix and the result for �̃α,m can
be written as

�̃α,m = �̃α,m

1 + ξ 2
α,ωq2

m

+ �̃α,b,m, (14)

where

ξ 2
α,ω = ξ 2

α,�|�α0|/
√

ω2 + |�α0|2, ξ 2
α,� = Dα/(2|�α0|).

Here, as in Eq. (12), the first term is induced by the correction
to the gap parameter and the second term is directly induced by
the interface. For a general complex state, the corrections have
to be split into the amplitude (along �α0) and phase channels,
�̃α,b,m = �̃a

α,b,m + �̃
φ

α,b,m, with

(
�̃a

α,b,m

�̃
φ

α,b,m

)
= (2 − δm)

γBα

ξ 2
α,ω

/
(d±ξα)

1 + ξ 2
α,ωq2

m

×
√

ω2 + |�α0|2√
ω2 + �2

s0

(
�a

s0 − �α0

�
φ

s0

)
, (15)
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where �a
s0 (�φ

s0) is the projection of �s0 along �α0 (into
perpendicular direction), as illustrated in Fig. 2. The gap
corrections �̃

a,φ
α,m are related to �̃

a,φ

α,b,m as

�̃a
α,m = 2πT

∑
β,ω>0

Ua
m,αβ

ω2�̃a
β,b,m

(ω2 + |�β0|2)3/2
, (16a)

�̃φ
α,m = 2πT

∑
β,ω>0

U
φ
m,αβ

�̃
φ

β,b,m√
ω2 + |�β0|2

, (16b)

with the matrices U
a,φ
m,αβ = [wαβ − �

a,φ
α,mδαβ]−1, where

�a
α,m = 2πT

∑
ω>0

[
ω2

(ω2 + |�α0|2)3/2
(
1 + ξ 2

α,ωq2
m

) − 1

ω

]

+ ln
Tc

T
,

(17)

�φ
α,m = 2πT

∑
ω>0

[
1√

ω2 + |�α0|2
(
1 + ξ 2

α,ωq2
m

) − 1

ω

]

+ ln
Tc

T
,

wαβ = λ−1
αβ − λ−1δαβ and λ is the largest eigenvalue of the

matrix λαβ . In the two-band case the explicit formulas for wαβ

and U
a,φ
m,αβ are given in Appendix, Eqs. (A19) and (A27).

In summary, Eqs. (12) and (13) give corrections to the gap
parameters and Green’s function for the s-wave superconduc-
tor, while Eqs. (14)–(16) give corresponding results for the s±

superconductor. These corrections will allow us to derive in
the next section a general result for the second harmonic of
the Josephson current that determines the width of the TRSB
region.

V. SECOND HARMONIC OF THE JOSEPHSON CURRENT

We already mentioned that the linear order with respect to
the coupling strength ∝1/γ̃Bα is not sufficient to determine
the range of parameters where the TRSB state is realized. As
discussed in Sec. II, in the weak-coupling regime this range is
determined by the term ∝sin(2φ) in the Josephson current that
appears only in the quadratic order. In this section we derive
microscopic expression for this term using corrections to the
Green’s functions presented in the previous section.

For arbitrary coupling, the current density flowing through
the interface between the s-wave superconductor and α band
is given by Eq. (10) and in ground state,

j =
∑

α

jα = A0I = 0.

Here, the parameter I has dimensionality of energy. To find
the second-order term in j , we have to expand the right-hand
side of Eq. (10) with respect to small corrections to �s and
�α . This gives I ≈ I (1) + I (2), where the term

I (1) = 2πT
∑

α,ω>0

Im[�∗
s0�α0]

γ̃Bα

√
ω2 + |�α0|2

√
ω2 + |�s0|2

(18)

corresponds to the standard main-order Josephson current and

I (2) = 2πT
∑

α,ω>0

Im(�̃∗
s �α0 + �∗

s0�̃α) − Im(�∗
s0�α0)

[
Re(�∗

s0�̃s )
ω2+|�s0|2 + Re(�∗

α0�̃α )
ω2+|�α0|2

]
γ̃Bα

√
ω2 + |�α0|2

√
ω2 + |�s0|2

(19)

is the second-order term, which is determined by the linear corrections to the Green’s functions due to the interface perturbations,
�̃{s,α}, considered in the previous section. Using these results, we can present the corrections at x = 0 in the form

�̃R
s (0) =

∑
α

Fa
s,α

�s0 + (−1)α|�α0| cos φ

γ̃Bα

, (20a)

�̃I
s (0) =

∑
α

Fφ
s,α

(−1)α|�α0| sin φ

γ̃Bα

, (20b)

�̃a
α(0) =

∑
β

Fa
αβ

�a
s0 − �β0

γBβ

, �̃φ
α(0) =

∑
β

Fφ
αβ

�
φ

s0

γBβ

, (20c)

where the response functions of the s-wave superconductor in the amplitude and phase channels, Fa,φ
s,α (ω), can be explicitly

written as

Fa
s,α = − ξs,ω/ξ ∗

s

tanh(ds/ξs,ω)

√
ω2 + �2

s0√
ω2 + |�α0|2

−
∞∑

m=0

2 − δm

1 + ξ 2
s,ωk2

m

2πT

Za
s,m

∑
ω1>0

ω2
1(

ω2
1 + �2

s0

)√
ω2

1 + |�α0|2
ξ 2
s,ω1

/
(dsξ

∗
s )

1 + ξ 2
s,ω1

k2
m

, (21a)

Fφ
s,α = − ξs,ω/ξ ∗

s

tanh(ds/ξs,ω)

√
ω2 + �2

s0√
ω2 + |�α0|2

−
∞∑

m=1

2

1 + ξ 2
s,ωk2

m

2πT

Z
φ
s,m

∑
ω1>0

1√
ω2

1 + |�α0|2
ξ 2
s,ω1

/
(dsξ

∗
s )

1 + ξ 2
s,ω1

k2
m

, (21b)
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with Z
a,φ
s,m defined in Eq. (13). The response functions of the s± superconductor, Fa,φ

αβ (ω), are given by

Fa
αβ = ξα,ω/ξα

tanh(d±/ξα,ω)

√
ω2 + |�α0|2√
ω2 + �2

s0

δαβ +
∞∑

m=0

2 − δm

1 + ξ 2
α,ωq2

m

2πT
∑
ω1>0

Ua
m,αβ

ω2
1(

ω2
1 + |�β0|2

)√
ω2

1 + �2
s0

ξ 2
β,ω1

/
(d±ξβ)

1 + ξ 2
β,ω1

q2
m

, (22a)

Fφ
αβ = Fφ

α,0δαβ + ξα,ω/ξα

tanh(d±/ξα,ω)

√
ω2 + |�α0|2√
ω2 + �2

s0

δαβ +
∞∑

m=1

2

1 + ξ 2
α,ωq2

m

2πT
∑
ω1>0

U
φ
m,αβ

1√
ω2

1 + �2
s0

ξ 2
β,ω1

/
(d±ξβ)

1 + ξ 2
β,ω1

q2
m

, (22b)

where the matrices U
a,φ
m,αβ are defined in Eq. (A27), and the term

Fφ

α,0 = 2πT

2d±w12|�20|
∑
ω>0

ξ 2
1,ω

/
ξ1√

ω2 + �2
s0

|�α0| (23)

describes the contribution from the uniform phase corrections �̃
φ

α,0 given by Eq. (A29). The different quantities entering Eq. (19)
can now be expressed as

Im[�∗
s0�α0] = −�s0|�α0|(−1)α sin φ,

Im[�̃∗
s�α0] = |�α0|

∑
β

1

γ̃Bβ

[ − Fa
s,β�s0(−1)α sin φ − (

Fa
s,β − Fφ

s,β

)|�β0|(−1)α+β sin φ cos φ
]
,

Im[�∗
s0�̃α] = �s0

∑
β

1

γBβ

[
(−1)βFa

αβ |�β0| sin φ + (
Fa

αβ − Fφ
αβ

)
�s0 sin φ cos φ

]
,

Re[�∗
s0�̃

a
s ] = �s

∑
β

Fa
s,β

�s0 + (−1)β |�β0| cos φ

γ̃Bβ

,

Re[�∗
α0�̃α] = −(−1)α|�α0|

∑
β

Fa
αβ

�s0 cos φ + (−1)β |�β0|
γBβ

.

We can see that I (2) contains terms proportional to sin φ and sin φ cos φ = 1
2 sin(2φ), I (2) = J (1) sin φ + J (2) cos φ sin φ. The

terms ∝sin φ just slightly shift location of the transition line. The transition order and possible width of the TRSB region are
determined by the terms ∝ sin φ cos φ. Collecting such terms in I, we obtain

J (2) = 2πT
∑

α,ω>0

|�α0|�s0Rα(ω)

γ̃Bα

√
ω2 + |�α0|2

√
ω2 + �2

s0
(24)

Rα(ω) =
∑

β

[
− |�β0|(−1)α+β

γ̃Bβ�s0

(
ω2Fa

s,β

ω2 + �2
s0

− Fφ
s,β

)
+ �s0

γBβ |�α0|
(

ω2Fa
αβ

ω2 + |�α0|2 − Fφ
αβ

)]
.

The term corresponding to the uniform phase tilt Fφ

α,0, Eq. (23), has special meaning and it is useful to evaluate it explicitly,

J (2)
φ,0 = −

(
2πT

γ̃B1

∑
ω>0

�s0|�10|√
ω2 + |�10|2

√
ω2 + |�s0|2

)2
γ1ξ

2
1,�|�10|/ξ1

d±w12|�10||�20| = −2e2

h̄
E2

J,1
ρsξs

d±ν1w12|�10||�20| , (25)

where we used the relations γ1ξ
2
1,�|�10|/ξ1 = h̄ρ1D1/(2ρsξs) = h̄/(2e2ν1ρsξs). This gives the following contribution to the

second harmonic of the Josephson current:

j
(2)
φ,0 = −jJ,1

EJ,1

2d±ν1w12|�10||�20| . (26)

The quantity E12 = d±ν1w12|�10||�20| in the denominator represents the interband coupling energy. Therefore this result exactly
corresponds to the result of the frustrated Josephson junction model. This term, however, dominates only in the case of small
interband coupling energy, when the parameter w12 is very small.

To gain a further insight on the structure of the second-harmonic amplitude J (2), we present it explicitly as a sum of terms
corresponding to contributions from the corrections to the s-wave and s± Green’s functions coming directly from the interface
(J (2)

b,∗) and via gap parameters (J (2)
�,∗)

J (2) = J (2)
b,s + J (2)

�,s + J (2)
b,pm + J (2)

�,pm + J (2)
φ,0. (27)
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We already considered above the last term, J (2)
φ,0, that is part of J (2)

�,pm coming the uniform phase response of s± superconductor.
This term requires separate treatment leading to Eq. (25), which corresponds to the result of the frustrated Josephson junction
model. As for the other terms, the s-wave components are given by the following explicit formulas:

J (2)
b,s = −2πT

∑
ω>0

(∑
α

�α0

γ̃Bα

√
ω2 + |�α0|2

)2
�2

s0

ω2 + �2
s0

ξs,ω/ξs

tanh(ds/ξs,ω)
, (28a)

J (2)
�,s = − ξ 2

s,�

�s0dsξs

[
− Y 2

a,0

Za
s,0

+ 2
∞∑

m=1

(
Y 2

φ,m

Z
φ
s,m

− Y 2
a,m

Za
s,m

)]
,

Yφ,m = 2πT
∑

m,α,ω>0

�α0

γ̃Bα

√
ω2 + |�α0|2

(√
ω2 + �2

s0

/
�s0 + ξ 2

�,sk
2
m

) , (28b)

Ya,m = 2πT
∑

m,α,ω>0

�α0ω
2

γ̃Bα

√
ω2 + |�α0|2

(
ω2 + �2

s0

)(√
ω2 + �2

s0/�s0 + ξ 2
�,sk

2
m

) ,

while the s± components can be written as

J (2)
b,pm = −2πT

∑
α,ω>0

1

γ̃BαγBα

�2
s0|�α0|2(

ω2 + �2
s0

)
(ω2 + |�α0|2)

ξα,ω/ξα

tanh(d±/ξα,ω)
, (29a)

J (2)
�,pm = −πTc

d±
�2

s0

∑
α,β

[
−Xa

0,αUa
0,αβγβξβXa

0,β + 2
∞∑

m=1

(
Xφ

m,αU
φ
m,αβγβξβX

φ
m,β − Xa

m,αUa
m,αβγβξβXa

m,α

)]
,

Xφ
m,α = 2πT

γ̃Bα

∑
ω>0

1√
ω2 + �2

s0

(√
ω2 + |�α0|2 + |�α0|ξ 2

�,αq2
m

) , (29b)

Xa
m,α = 2πT

γ̃Bα

∑
ω>0

ω2√
ω2 + �2

s0(ω2 + |�α0|2)
(√

ω2 + |�α0|2 + |�α0|ξ 2
�,αq2

m

) .

We note also a useful relation for the combination γβξβ

entering Eq. (29b), γβξβ = ξ ∗
s νs/νβ . In summary, Eqs. (25),

(28), and (29) give general expressions for the components
contributing to the second harmonic of Josephson current in
Eq. (27). Even though these formulas are rather cumbersome,
they are suitable for numerical evaluation of the second-
harmonic amplitude for arbitrary parameters of superconduc-
tors and interface. In the next section, we analyze these terms
for practically important particular case in which much simpler
analytical results can be derived.

A. Analysis of terms for low temperatures in the case ds < ξs

and �s � |�α|
Unfortunately, general formulas derived in the previous

section are rather cumbersome. To understand better the
relation between different terms and their absolute values, in
this section we evaluate them at low temperature and for the
most interesting case of weaker s-wave superconductor, small
ds , and large d±. In these limits, it is possible to derive simple
analytical results for the most important terms.

1. Terms J (2)
b,s and J (2)

�,s

For very thin s-wave superconductor, the dominating in
1/ds order term is coming from J (2)

b,s and the m = 0 term in

the amplitude part of J (2)
�,s , which we will notate as J (2)

�,s,0,

J (2)
b,s = − 1

ds

∫ ∞

0
dω

(∑
α

�α0

γ̃Bα

√
ω2 + |�α0|2

)2

× �2
s0(

ω2 + �2
s0

)3/2 ,

J (2)
�,s,0 ≈ 1

ds

[ ∑
α

∫ ∞

0
dω

�α0�
2
s0

γ̃Bα

√
ω2 + |�α0|2

(
ω2 + �2

s0

)3/2

]2

,

where in the last formula we used a compensation condition
for the Josephson energy near the transition point. In the limit
�s0 	 |�α0|, integrals converge at ω ∼ �s0 and one may
think than it is possible to replace |�α0|√

ω2+|�α0|2
→ 1 under the

frequency integrals. However, as
∫ ∞

0 dω
�2

s0

(ω2+�2
s0)3/2 = 1, within

this approximation, the two terms in the sum

J (2)
0,s = J (2)

b,s + J (2)
�,s,0

exactly compensate each other,

( J (2)
b,s

J (2)
�,s,0

)
≈ ∓ 1

ds

(∑
α

(−1)α

γ̃Bα

)2

,
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and therefore they must be evaluated in higher order with
respect to �s0/|�α0|. To proceed, we introduce the definitions

L(ω) =
∑

α

(−1)α|�α0|
γ̃Bα

√
ω2 + |�α0|2

= L0 + L1(ω),

with L0 = ∑
α(−1)α/γ̃Bα and

L1(ω) =
∑

α

(−1)α

γ̃Bα

( |�α0|√
ω2 + |�α0|2

− 1

)
,

which allows us to represent

J (2)
b,s = − 1

ds

∫ ∞

0
dωL2(ω)

�2
s0(

ω2 + �2
s0

)3/2 ,

J (2)
�,s,0 = 1

ds

[ ∫ ∞

0
dωL(ω)

�2
s0(

ω2 + �2
s0

)3/2

]2

,

and rewrite J (2)
0,s as

J (2)
0,s = 1

ds

[ ∫ ∞

0
dωL1(ω)

�2
s(

ω2 + �2
s

)3/2

]2

− 1

ds

∫ ∞

0
dωL2

1(ω)
�2

s(
ω2 + �2

s

)3/2 .

The dominating contribution is coming from the second term
and evaluating integral, we finally obtain

J (2)
0,s ≈ −�2

s

ds

⎡
⎣2 ln 2 − 1

2

(∑
α

(−1)α

γ̃Bα|�α|

)2

−
1

|�1|2 ln
(
1 + |�1|

|�2|
) + 1

|�2|2 ln
(
1 + |�2|

|�1|
) − 2 ln 2

|�1||�2|
γ̃B1γ̃B2

⎤
⎦

(30)

It is interesting to note that this 1/ds term only exists in the
asymmetric case, it vanishes for identical s± bands.

2. Term J (2)
b,pm

The term J (2)
b,pm in Eq. (29a) for T = 0 and d± � ξα

becomes

J (2)
b,pm = −

√
πTc

∑
α

�2
s0|�α0|2
γ̃BαγBα

×
∫ ∞

0

dω(
ω2 + �2

s0

)
(ω2 + |�α0|2)5/4

. (31)

For �s0 	 |�α0|, we can evaluate the frequency integral
leading to the quite simple result

J (2)
b,pm ≈ −π

2

∑
α

�s0

γ̃BαγBα

√
πTc

|�α0| . (32)

In most cases, this is actually a dominating term that
may be used for an approximate evaluation of the total

second-harmonic amplitude. It has only linear order with
respect to �s0, while other terms are proportional to �2

s0. Also,
for a typical contact, γα = γ̃Bα/γBα � 1 due to semimetalic
nature of iron-based superconductors, which enhances the
J (2)

∗,pm terms in comparison with the J (2)
∗,s terms. The negative

sign of J (2)
b,pm implies the continuous-transition scenario and

the existence of the TRSB state. In particular, comparing J (2)
b,pm

with term J (2)
0,s , Eq. (30), we obtain, up to a dimensionless

function of the ratios γ̃B1/γ̃B2 and |�10|/|�20|,

J (2)
b,pm

J (2)
0,s

≈ γ1
ds

ξ ∗
s

|�10|
�s0

,

which means that the s-wave term J (2)
0,s exceeds J (2)

b,pm only
for an extremely thin s-wave layer ds < ξ ∗

s �s0/ (γ1|�10|).
Another factor further enhancing this ratio is that different
s± bands contribute to J (2)

b,pm with the same sign while their

contributions to J (2)
0,s partially compensate one another.

3. Term J (2)
�,pm

Finally, we obtain the limiting form for the most com-
plicated term J (2)

�,pm in Eq. (29b). The quantities �
a,φ
m,α that

determine the matrices U
a,φ
m,αβ in Eq. (A27) can be evaluated at

T = 0 exactly:

�a,φ
m,α = ga,φ(am) − ln

( |�α0|
4πTc

)
+ ψ(1/2), (33a)

gφ(a) = − 2a√
1 − a2

arctan

√
1 − a

1 + a
, (33b)

ga(a) = −2

a

(
π

4
−

√
1 − a2 arctan

√
1 − a

1 + a

)
, (33c)

where am = (πmξα,�/d±)2 and ψ(x) is the digamma function.
The quantities X

a,φ
m,α can be evaluated approximately in the limit

�s0 	 |�α0|:

Xφ
m,α ≈ 1

γ̃Bα|�α0|
1

1 + am

(
ln

4|�α0|
�s0

+ am

1 − am

ln
2

1 + am

)
,

(34a)

Xa
m,α ≈ 1

γ̃Bα|�α0|
ln(1 + am)

am

. (34b)

Assuming that the values for ξα , |�α0|, and γα for different α

are close, the term J (2)
�,pm can be roughly estimated as

J (2)
�,pm ∼ πTc

�2
s0

γ̃B1γB1�
2
10

(35)

and we can see that this term is typically smaller than J (2)
b,pm,

Eq. (32), by the ratio �s0/�10 (assuming �10/πTc ∼ 1).

B. Region near T s
c for T s

c � Tc

Near the transition temperature of the s-wave superconduc-
tor all terms contributing to J (2) decrease as �2

s0. In particular,
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the dominating term J (2)
b,pm behaves as

J (2)
b,pm ≈ −π

4

∑
α

√
πTc

|�α0|
�2

s0

/
T s

c

γ̃BαγBα

for T → T s
c − 0. (36)

This behavior has an important consequence: the width of
the TRSB state shrinks with increasing temperature. On the
other hand, the weak coupling approach breaks down when
the temperature is too close to T s

c when the correction to the
s-wave gap becomes comparable with its bulk value.

VI. WIDTH OF TRSB REGION

To analyze the width of the TRSB region in the
weak-coupling regime, we represent the supercurrent flow-
ing through the interface in the form j = ∑

α jα =
A0(J (1) sin φ + J (2) cos φ sin φ). The transition roughly cor-
responds to the vanishing of the first harmonic J (1), which we
can represent as

J (1) =
∑

α

(−1)α

γ̃Bα

�s0fJ,α, (37)

with

fJ,α ≡ fJ

( |�α0|
T

,
�s0

T

)

= 2πT
∑
ω>0

|�α0|√
ω2 + |�α0|2

√
ω2 + |�s0|2

.

We remind that the TRSB state only exists if J (2) < 0. In
this case, which is realized for our system, we can write the
condition for the TRSB state range as∣∣∣∣fJ,1

γ̃B1
− fJ,2

γ̃B2

∣∣∣∣ <
|J (2)|
�s0

. (38)

This formula together with microscopic results for J (2) of the
previous section represent the main results of this paper. For
fixed γ̃ −1

B1 , the transition from aligned to TRSB state occurs at

the following values of γ̃ −1
B2 :

1

γ̃B2
= fJ,1

fJ,2γ̃B1
± J (2)

�s0fJ,2
.

As J (2) scales as γ̃ −2
Bα , the width of the TRSB region can be

conveniently characterized by the parameter

γ̃ 2
B2�γ̃ −1

B2 ≈ �γ̃B2 = 2γ̃ 2
B2J (2)

�s0fJ,2
, (39)

which depends only on bulk properties of the superconductors
and does not depend on the boundary resistances.34 In
particular, at low temperatures and for �s0 	 |�20|, using
the asymptotic fJ,α ≈ ln(4|�α0|/�s0) and keeping only the
dominating term in J (2), Eq. (32), we obtain the following
estimate:

�γ̃B2 ≈ π ln
4|�20|
�s0

∑
α

γα(
ln 4|�α0|

�s0

)2

√
πTc

|�α0| . (40)

We can see that this width only weakly depends on the value
of the s-wave gap and is mostly determined by the parameters
γα . Using the definition of γ̃Bα and γα , Eqs. (7) and (8), we
immediately obtain a simple estimate for the spread of the
partial boundary resistance �RB2 within which the TRSB state
exists,

�RB2 ≈ π ln
4|�20|
�s0

∑
α

ραξα(
ln 4|�α0|

�s0

)2

√
πTc

|�α0| , (41)

that is mainly determined by the products ραξα .
Figure 3 illustrates the temperature dependencies of the

second-harmonic amplitude J (2) and the width of the TRSB
region for the representative parameters listed in the left figure
and for the two values of the ratio T s

c /Tc, 0.3 and 0.5. In
Fig. 3(a), we show for comparison both the full amplitude of
the second harmonic and the term J (2)

b,pm only (dashed lines).
We can see that this term typically accounts for 80%–85%
of the total amplitude. The remaining part mostly comes from

FIG. 3. (Color online) (a) Temperature dependencies of the second-harmonic amplitude for two values of the ratio T s
c /Tc, 0.3 and 0.5.

Dashed lines show the term J (2)
b,pm only. Other parameters are shown in the plot. We also assume λ11 = λ22 = 0. (b) Corresponding temperature

dependencies of the TRSB width, Eq. (39).
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the terms J (2)
�,pm and J (2)

φ,0. For used representative parameters

the contributions from the s-wave terms J (2)
∗,s are negligible.

We emphasize the shrinking of the TRSB width illustrated in
Fig. 3(b), �γ̃B2 ∝ √

T s
c − T near T s

c . This means that in some
range of parameters, the transition from the aligned to TRSB
state may be observed as a function of temperature, as in the
case of the 0-π transition in SFS junctions.35

VII. DENSITY OF STATES OF S-WAVE
SUPERCONDUCTOR WITHIN THE TRSB REGION

Contact with s± superconductor induces specific features
in the s-wave density of states (DOS). For the aligned states
in the case of thin s-wave layer, the s± gaps aligned with �s0

generate positive corrections to DoS, while antialigned gaps
generate negative corrections.22 The latter negative features
can be used to identify s± state.

In this short section, we consider evolution of contact-
induced features of the s-wave DoS across the TRSB region.
To find the density of states, we have to perform analytical
continuation of the Green’s functions to real energies iω →
E + iδ. The normalized DoS is related to the real-energy
Green’s function by the standard expression

N (E,x) = Re

[
E√

E2 − �(E,x)�†(E,x)

]
, (42)

where �†(E,x) = �∗(−E,x). Expanding �s(E,x) and taking
into account that �s0 is selected real, we obtain the proximity-
induced correction to the s-wave DoS:

δNs(E,x) ≈ Re

{
E�s0[�̃†

s(E,x) + �̃s(E,x)]

2
(
E2 − �2

s0

)3/2

}
. (43)

The correction to the Green’s function can be
represented again as a Fourier series, �̃s(E,x) =∑∞

m=0 �̃s,m(E) cos(mπx/ds). In the Matsubara presentation,
two contributions to the Fourier components �̃s,m are given by
Eqs. (A8) and (A9). Using these results, we obtain for these
contributions at real energies:

�̃s,b,m + �̃
†
s,b,m

2
= (2 − δm)ξ 2

s,�

/
(dsξ

∗
s )√

E2 − �2
s0

/
�s0 + i(πmξs,�/ds)2

×
∑

α

√
E2 − �2

s0√
|�α0|2 − E2

Re[�α0] − �s0

γ̃Bα

,

�̃s,�,m + �̃
†
s,�,m

2
=

√
E2 − �2

s0�̃
R
s,m√

E2 − �2
s0 + i�s0(πmξs,�/ds)2

,

where �̃R
s,m is given by Eq. (13a). These results together with

Eq. (43) determine the shape of the DoS correction for arbitrary
parameters of superconductors in the linear approximation
with respect to the coupling strength 1/γ̃Bα .

For the important case of small ds , we can keep only the
uniform m = 0 term in the Fourier expansions leading to a

simple result similar to one for the aligned state:22

�̃s,b,m + �̃
†
s,b,m

2
=

∑
α

�B,α

Re(�α0) − �s0√
|�α0|2 − E2

(44)

with

�B,α = �s0
ξ 2
s,�

dsξ
∗
sγ̃Bα

= 1

2e2νsdsR
α
B

.

Therefore the correction to the s-wave DoS in the case of thin
s-wave layer is given by

δNs(E,x) ≈ E�s0(
E2 − �2

s0

)3/2

∑
α

�Bα

× Re(�α0) − �s0√
|�α0|2 − E2

�(|�α0| − E), (45)

where �(x) is the step function. If, as before, we define
that phase shift between �s0 and �10 as φ then Re(�10) =
|�10| cos φ and Re(�20) = −|�20| cos φ.

Figure 4 illustrates the evolution of this correction with
increasing angle φ for representative parameters. Two limiting
cases φ = 0 and π correspond to aligned states in which the
aligned and antialigned gaps induce asymmetric peak and dip
correspondingly. With increasing phase, the peak smoothly
transforms into a dip and vice versa. In the maximally frus-
trated state for φ = π/2, the DoS has two small dips. Note that
the DoS correction is obtained with the linear approximation
with respect to the coupling between the superconductors,
which somewhat overestimates the amplitude and sharpness
of the peaks.22

FIG. 4. (Color online) Evolution of the proximity-induced fea-
tures in the s-wave DoS within the TRSB region with increasing
angle φ between �s0 and �10. Curves are vertically displaced for
clarity. Dashed lines show the bulk DoS.
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VIII. SUMMARY AND DISCUSSION

In summary, we evaluated the range of parameters where
the TRSB state is realized for the interface between s-wave
and s± superconductors using the simple microscopic theory.
This state appears when the partial Josephson energies almost
completely compensate each other. The width of the TRSB
region is determined by the sin(2φ) term in the Josephson
current, which appears in the second order with respect to
the coupling strength between the superconductors. We found
that the dominating contribution to this term is determined by
the direct boundary correction to the Green’s function of the
s± superconductor. This term is missed by phenomenological
models of the junction. The width of the TRSB region shrinks
with increasing temperature giving possibility to detect the
transition from the aligned to TRSB state as function of
temperature.

The main purpose of this paper is to establish factors that
determine the width of the TRSB region at the s/s± interface
in the simplest possible situation accessible for full analytical
analysis. Even in this relatively simple case the analysis
occurred to be very nontrivial.

Several factors may have quantitative influence on results
reported in this paper and complicate their applications to
real iron-based superconductors: (i) most of these materials
have more than two bands (up to five). This is not a crucial
complication. Our consideration can be directly generalized to
arbitrary number of bands. (ii) Due to the very short coherence
length, most iron-based superconductors are probably in the
clean limit. In the cleanest materials, a significant anisotropy
of the gap36 and even the gap nodes37 were revealed. On
the other hand, in several other compounds, isotropic gaps
within the bands were found,38 which probably indicates
substantial intraband scattering. The presence of a significant
gap anisotropy and nodes does not contradict an overall picture
of the s± state because what matters most is the average
gap inside the band. This means that the TRSB state is also
expected within some range of parameters at the interface
between conventional and clean s± superconductor. However,
our calculation of the width of this region is not directly
applicable to this case. (iii) In compounds with strong impurity
scattering, one can expect some interband scattering, which
was neglected in our model. As this scattering suppresses s±
state, it can not be too strong. The main effects of this scattering
are suppression of the s± gap parameters and emergence of the
subgap states. These effect may have some influence on the
location and width of the TRSB region.

An accurate description of these factors requires special
considerations that will further complicate the theoretical
model. Nevertheless, we expect that a qualitative picture of the
transitional region will hold within a more realistic framework.
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APPENDIX: DERIVATION OF BOUNDARY-INDUCED
CORRECTIONS IN THE WEAK-COUPLING LIMIT

In this Appendix, we derive corrections to the Green’s
functions and gaps in the linear order with respect to the
coupling parameters 1/γBα . As a zero approximation, we
consider a general complex case when there is a finite phase
difference φ between the bulk zero-order gap parameters �10

and �s0 as shown in Fig. 2. Correspondingly, the phase
difference between �20 and �s0 is φ − π . This calculation
covers both aligned states when φ equals 0 or π and complex
TRSB states with 0 < φ < π .

1. s-wave gap and Green’s function

We start with calculation of corrections to the s-wave
Green’s functions and gap parameter, �̃s and �̃s . From
Eq. (4a), we obtain that the first-order corrections to the s-wave
Green’s functions obey the following equations:

ξ 2
s,ω

d2�̃s

dx2
− �̃s = −�̃s, (A1)

where ξ 2
s,ω = Ds/(2

√
ω2 + �2

s0) = ξ 2
s,��s0/

√
ω2 + �2

s0 and

ξ 2
s,� = Ds/(2�s0). Without loss of generality, the zero-order

gap parameters �s0 can be selected real. In this case, the
self-consistency condition for the linear corrections can be
written as

2πT
∑
ω>0

1√
ω2 + �2

s0

[
�̃s − �2

s0Re(�̃s)

ω2 + �2
s0

− �̃s

]
= 0. (A2)

In the boundary condition for d�s/dx, Eq. (6a), we can neglect
in the right-hand side differences between �’s and �’s and
approximate �’s by their bulk values. This gives

ξ ∗
s√

ω2 + �2
s0

d�̃s

dx
= −

∑
α

1

γ̃Bα

�s0 − �α0√
ω2 + |�α0|2

(A3)

at x = 0. Note that, in general, �̃s , �̃s , and �α0 are complex,
�α0 = |�α0| exp(iφα), φ1 = φ, φ2 = φ − π . They are real
only for the aligned state.

To solve Eqs. (A1) and (A3), it is convenient to split �̃s

into the two contributions, �̃s = �̃s,b + �̃s,�, where �̃s,b is
induced by the boundary condition and �̃s,� is induced by the
gap correction. The first contribution �̃s,b can be found from
the following equation and the boundary condition

ξ 2
s,ω�̃′′

s,b − �̃s,b = 0, (A4a)

ξ ∗
s �̃′

s,b(0) =
∑

α

1

γ̃Bα

√
ω2 + �2

s0√
ω2 + |�α0|2

(�α0 − �s0), (A4b)

while the second contribution �̃s,� obeys

ξ 2
s,ω�̃′′

s,� − �̃s,� = −�̃s, (A5a)

�̃′
s,�(0) = 0. (A5b)
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The solution �̃s,b(x) of the linear equation (A4a) with the
boundary condition �̃′

s,b = 0 at x = −ds is given by

�̃s,b(x) = Cs,b cosh

(
x + ds

ξs,ω

)
, (A6)

where the constant Cs,b can be found from the boundary
condition at x = 0, Eq. (A4b),

Cs,b = ξs,ω/ξ ∗
s

sinh(ds/ξs,ω)

∑
α

√
ω2 + �2

s0

γ̃Bα

√
ω2 + |�α0|2

(�α0 − �s0)

leading to the following result:

�̃s,b(x) = ξs,ω cosh
[
(x + ds)/ξs,ω

]
ξ ∗
s sinh(ds/ξs,ω)

×
∑

α

√
ω2 + �2

s0

γ̃Bα

√
ω2 + |�α0|2

(�α0 − �s0). (A7)

We compute �̃s,� and �̃s using the Fourier
expansions, �̃s,�(x) = ∑∞

m=0 �̃s,�,m cos kmx, �̃s(x) =∑∞
m=0 �̃s,m cos kmx with km = mπ/ds . The Fourier

components �̃s,b,m of �̃s,b(x) can be computed explicitly
from Eq. (A7),

�̃s,b,m = (2−δm)ξ 2
s,ω

/
(dsξ

∗
s )

1 + ξ 2
s,ωk2

m

∑
α

√
ω2+�2

s0√
ω2 + |�α0|2

�α0 − �s0

γ̃Bα

.

(A8)

Equation (A5a) immediately gives the following relation
between the Fourier components �̃s,�,m and �̃s,m:

�̃s,�,m = �̃s,m

1 + ξ 2
s,ωk2

m

. (A9)

Substituting this result into the self-consistency condition (A2)
and splitting it into the real and imaginary parts, we relate
�̃s,m = �̃R

s,m + i�̃I
s,m to �̃s,b,m = �̃R

s,b,m + i�̃I
s,b,m as

2πT
∑
ω>0

�2
s0 + ω2 ξ 2

s,ωk2
m

1+ξ 2
s,ωk2

m(
ω2 + �2

s0

)3/2 �̃R
s,m

= 2πT
∑
ω>0

ω2�̃R
s,b,m(

ω2 + �2
s0

)3/2 , (A10a)

2πT
∑
ω>0

1√
ω2 + �2

s0

ξ 2
s,ωk2

m

1 + ξ 2
s,ωk2

m

�̃I
s,m

= 2πT
∑
ω>0

�̃I
s,b,m√

ω2 + �2
s0

. (A10b)

The components �̃R
s,m and �̃I

s,m describe responses of the
s-wave gap parameter to the interface perturbation in the
amplitude and phase channels. Equations (A8)–(A10) already
provide a formal solution of the problem. As the left-hand side
of Eq. (A10b) vanishes for m = 0, solution for the imaginary

part exists only if

∑
ω>0

�̃I
s,b,0√

ω2 + �2
s0

= 0

giving the condition∑
α,ω>0

1√
ω2 + �2

s0

√
ω2 + |�α0|2

Im(�α0)

γ̃Bα

= 0. (A11)

Uncertainty in �̃I
s,0 reflects the phase-rotation invariance and

we can select �̃I
s,0 = 0. As the Josephson energy between the

s-wave superconductor and α band, EJα is given by Eq. (11)
and �α0 = |�α0| exp(iφα), we can see that the condition (A11)
simply means ∑

α

EJα sin φα = 0.

Since the partial Josephson currents are proportional to EJα ,
this condition implies that the total Josephson current flowing
through the boundary is always zero in the ground state.
For two bands, the condition for realization of the TRSB state
in the linear order with respect to the interface transparency
is simply EJ1 = EJ2. To establish an accurate range of
parameters within which the TRSB state is stable, one has
to go beyond the linear order.

Using the expansion (A8), we obtain the explicit presenta-
tions for �̃R

s,m and �̃I
s,m given by Eq. (13) of the main text which

in turn determine the term �̃s,�,m of the Green’s function, Eq.
(A9). Since we already derived the result for �̃s,b,m, Eq. (A7),
we now have all corrections.

The full analytical formulas are somewhat cumbersome
and it is useful to derive more transparent results in simple
limiting cases. At low temperatures, the summation with
respect to the Matsubara frequencies can be replaced by the
integration 2πT

∑
ω>0 → ∫ ∞

0 dω. In this limit, we can obtain
the analytical result for the average correction to the order
parameter amplitude �̃R

s,0:

�̃R
s,0

πTc

= ξ ∗
s

ds

∑
α

U (�s0/|�α0|)Re(�α0) − �s0

γ̃Bα|�α0| (A12)

with

U (a) =
∫ ∞

0
dz

z2

(z2 + 1)3/2
√

a2z2 + 1

= K(1 − a2) − E(1 − a2)

1 − a2
,

where K(m) = ∫ π/2
0 (1 − m sin2 θ )−1/2dθ and E(m) =∫ π/2

0 (1 − m sin2 θ )1/2dθ are the complete elliptic integrals. As
we mentioned before, the uniform part of �̃s can be selected
to be real, �̃s,0 = �̃R

s,0.
We can derive the simple analytical results for important

particular case of (i) thin s-layer, ds 	 ξs,�, (ii) weaker s su-
perconductor, �s0 	 |�α0|, and (iii) low temperatures, T 	
T s

c . Due to the first condition, the dominating contribution to
the gap correction is given by the coordinate independent part
�̃s,0, which is determined by the general formula (A12). In
the limit of �s0 	 |�α0|, we can use the asymptotics of the
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function U (a) in the limit a 	 1, U (a) ≈ ln(4/a) − 1, leading
to the following simple result:

�̃R
s,0

πTc

≈ ξ ∗
s

ds

∑
α

Re(�α0) − �s0

γ̃Bα|�α0|
[

ln

(
4|�α0|
�s0

)
− 1

]
. (A13)

The sign of �̃R
s,0 determines net effect of the s± superconductor

on the s superconductor, i.e., the sign of the proximity effect
(positive versus negative proximity). The proximity is always
negative in the TRSB state. In the case of the aligned state
corresponding to Re(�α0) = �α0, as one can expect, s± gaps
aligned with �s0 enhance s-wave superconductivity, while
anti-aligned s± gaps suppress superconductivity in the s super-
conductor. The relative contributions are mostly determined by
the electrical coupling between s-superconductor and the s±
bands described by parameters γ̃ −1

Bα . Another important factor
is that the aligned gaps give positive contribution proportional
to gap difference �α0 − �s0, while antialigned gaps give
negative contribution proportional to gap sum |�α0| + �s0.
This gives rise to the possibility of the total negative proximity
effect in the aligned state.

Weak spatial dependence of �̃s(x) is determined by the
components �̃s,m with m > 0. At T = 0, these components
can be presented as

�̃R
s,m = 1

Za
s,m

2ξ 2
s,�

dsξ ∗
s

∑
α

Ja

( |�α0|
�s0

,βm

)
Re(�α0) − �s0

γ̃Bα

,

(A14a)

�̃I
s,m = 1

Z
φ
s,m

2ξ 2
s,�

dsξ ∗
s

∑
α

Jφ

( |�α0|
�s0

,βm

)
Im(�α0)

γ̃Bα

(A14b)

with βm = (πmξs,�/ds)2,

Za
s,m =

∫ ∞

0

dz

(z2 + 1)3/2

[
1 + βmz2

√
z2 + 1 + βm

]

= 1

βm

[
π

2
+

√
β2

m − 1 ln
(√

β2
m − 1 + βm

)]
,

Ja(δ,β) =
∫ ∞

0
dz

z2

(z2 + 1)
√

z2 + δ2

1√
z2 + 1 + β

,

Zφ
s,m =

∫ ∞

0

dz√
z2 + 1

βm√
z2 + 1 + βm

= βm√
β2

m − 1
ln

(
βm +

√
β2

m − 1
)
,

Jφ(δ,β) =
∫ ∞

0

dz√
z2 + δ2(

√
z2 + 1 + β)

.

In the limit βm � 1, corresponding to ds 	 ξs , asymptotics
of both Za

s,m and Z
φ
s,m are Z

{a,φ}
s,m ≈ ln (2βm). In the limits

|�α0| � �s0 and �s0βm � |�α0| corresponding to β � δ �
1, Ja(δ,β) and Jφ(δ,β) also have the same asymptotics:

J{a,φ}(δ,β) ≈
∫ ∞

0

dz

(z + β)
√

z2 + δ2
≈ 1

β
ln

2β

δ
.

Collecting all terms, we obtain

�̃s,m ≈
∑

α

[
1 + ln (�s0/|�α0|)

ln[2(πmξs,�/ds)2]

]
2ds/ξ

∗
s

(πm)2

�α0 − �s0

γ̃Bα

.

Using the relation (|x| − 1)2 = 1
3 + 4

∑∞
m=1

cos(πmx)
(πm)2 , we can

approximately present the gap correction in real space as

�̃s(x) ≈ �̃s,0 − ds

ξ ∗
s

∑
α

�α0 − �s0

γ̃Bα

[
(x + ds)2

2d2
s

− 1

6

]

×
[

1 + ln (�s0/|�α0|)
2 ln(π

√
2ξs,�/ds)

]
. (A15)

Correspondingly, for the Green’s function in the same limits
we derive

�̃s(ω,x) ≈ �̃s,0 + πTc

ξ ∗
s

ds

[
1 + 1

2

(
x + ds

ξs,ω

)2]

×
∑

α

1√
ω2 + �2

α

�α0 − �s0

γ̃Bα

. (A16)

In summary, simple analytical results given by Eqs. (A13)–
(A16) determine corrections to the s-wave gap and Green’s
function for a thin s-wave layer.

2. s±-wave gaps and Green’s functions

We can evaluate corrections to the s± gap parameters
and Green’s functions following the same general route. The
difference is that the matrix structure of the self-consistency
condition, Eq. (5b), has to be properly accounted for. The
first-order correction to �α with respect to the coupling
strength γ −1

Bα is determined by the following equation and
boundary conditions:

ξ 2
α,ω�̃′′

α − �̃α = −�̃α, (A17a)

ξαGα�̃′
α = Gs

γBα

(�s0 − �α0) at x = 0, (A17b)

and �′
α = 0 at x = d± with Gα ≈ ω/

√
ω2 + |�α0|2,

ξ 2
α,ω = Dα/(2

√
ω2 + |�α0|2) = ξ 2

α,�|�α0|/
√

ω2 + |�α0|2,
and ξ 2

α,� ≡ Dα/(2|�α0|). The self-consistency condition for
corrections can be written as

2πT
∑
ω>0

{
1√

ω2 + |�α0|2
[
�̃α − �α0Re(�̃α�∗

α0)

ω2 + |�α0|2
]

− �̃α

ω

}

=
∑

β

wαβ�̃β − ln
Tc

T
�̃α (A18)

with wαβ = λ−1
αβ − λ−1δαβ and λ is the largest eigenvalue of the

matrix λαβ . The matrix wαβ is degenerate, w11w22 − w12w21 =
0, and its components are given by

(
w11

w22

)
=

√
λ2−/4 + λ12λ21 ∓ λ−/2

det λ
, w12 = − λ12

det λ
(A19)

with λ− ≡ λ11 − λ22 and det λ ≡ λ11λ22 − λ12λ21.
Similar to the s-wave case, we can split �̃α into the

contributions induced by the boundary condition and by
the correction to the gap parameter, �̃α = �̃α,b + �̃α,�. The
equation and the boundary condition for �̃α,b(x) are

ξ 2
α,ω�̃′′

α,b − �̃α,b = 0, (A20a)

ξα�̃′
α,b = − 1

γBα

√
ω2 + |�α0|2√
ω2 + �2

s0

(�s0 − �α0) . (A20b)
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The solution for �̃α,b(x) is given by

�̃α,b(x) = ξα,ω

ξα

√
ω2 + |�α0|2

γBα

√
ω2 + �2

s0

cosh[(x − d±)/ξα,ω]

sinh(d±/ξα,ω)

×(�s0 − �α0). (A21)

The component �̃α,�(x) has to be found from the following
equation and boundary conditions:

ξ 2
α,ω�̃′′

α,� − �̃α,� = −�̃α, (A22a)

�̃′
α,� = 0 for x = 0,d±. (A22b)

We can again find �̃α,�(x) and �̃α(x) using
Fourier expansions, �̃α,�(x) = ∑

m �̃α,�,m cos (qmx),
�̃α(x) = ∑

m �̃α,m cos (qmx) with qm = mπ/d±. From
Eq. (A22a), we immediately find

�̃α,�,m = �̃α,m

1 + ξ 2
α,ωq2

m

. (A23)

As follows from the structure of the the self-consistency
equation (A18), the responses of the order parameters �̃α are
different in the amplitude and phase channels. To proceed, we
split all quantities into the amplitude and phase components,
as illustrated in Fig. 2, X = Xa + Xφ ,

Xa = �α0Re(X�∗
α0)

|�α0|2 ; Xφ = X − �α0Re(X�∗
α0)

|�α0|2 ,

where X stands for �̃α , �̃α,b, �̃α,�, and �s0. Such de-
composition of �s0 is illustrated in Fig. 2. Explicitly,
we can write, �a

s0 = (�10/|�10|)|�s0| cos φ and �
φ

s0 =
−i(�10/|�10|)|�s0| sin φ. Substituting �̃α,� into the self-
consistency equation (A18), we obtain the following equations
for �̃a

α,m and �̃
φ
α,m:

∑
β

(
wαβ − �a

α,mδαβ

)
�̃a

β,m = 2πT
∑
ω>0

ω2�̃a
α,b,m

(ω2 + |�α0|2)3/2
,

(A24a)

�a
α,m = 2πT

∑
ω>0

[
ω2

(ω2+|�α0|2)3/2
(
1+ξ 2

α,ωq2
m

) − 1

ω

]
+ ln

Tc

T
,

∑
β

(
wαβ − �φ

α,mδαβ

)
�̃

φ
β,m = 2πT

∑
ω>0

�̃
φ

α,b,m√
ω2 + |�α0|2

,

�φ
α,m = 2πT

∑
ω>0

[
1√

ω2 + |�α0|2
1

1 + ξ 2
α,ωq2

m

− 1

ω

]
+ ln

Tc

T
,

(A24b)

where the Fourier components �̃a
α,b,m and �̃

φ

α,b,m can be
computed explicitly from Eq. (A21),(

�̃a
α,b,m

�̃
φ

α,b,m

)
= (2 − δm)

γBα

ξ 2
α,ω

/
(d±ξα)

1 + ξ 2
α,ωq2

m

×
√

ω2 + |�α0|2√
ω2 + �2

s0

(
�a

s0 − �α0

�
φ

s0

)
. (A25)

Solutions of Eq. (24) are

�̃a
α,m = 2πT

∑
β,ω>0

Ua
m,αβ

ω2�̃a
β,b,m

(ω2 + |�β0|2)3/2
, (A26a)

�̃φ
α,m = 2πT

∑
β,ω>0

U
φ
m,αβ

�̃
φ

β,b,m√
ω2 + |�β0|2

, (A26b)

where the matrices U
a,φ
m,αβ = [wαβ − �

a,φ
α,mδαβ]−1 in the two-

band case are given by

U
a,φ
m,αβ = 1

D
a,φ

U,m

[
w22 − �

a,φ

2,m −w12

−w21 w11 − �
a,φ

1,m

]
,

(A27)

D
a,φ

U,m = −�
a,φ

2,mw11 − �
a,φ

1,mw22 + �
a,φ

1,m�
a,φ

2,m.

The equation for the phase component at m = 0 requires
special attention. We note that the equation for the bulk gaps
have the form ∑

β

(
wαβ − �

φ

α,0δαβ

)
�β0 = 0

meaning that Eq. (A24b) at m = 0 is actually degenerate,
i.e., its determinant vanishes, D

a,φ

U,0 = −w11�
φ

2,0 − w2�
φ

1,0 +
�

φ

1,0�
φ

2,0 = 0. This degeneracy reflects gauge invariance with
respect to identical phase change of the order parameters �α0.
This means that the equation for �̃

φ

α,0 only has solution if
its right-hand side satisfies certain condition which, using
the bulk gap ratio �10/�20 = −w12/(w11 − �

φ

1,0) = −(w22 −
�

φ

2,0)/w21, can be written as

2πT
∑
ω>0

(
w21�10�̃

φ

1,b,0√
ω2 + |�10|2

+ w12�20�̃
φ

2,b,0√
ω2 + |�20|2

)
= 0. (A28)

The meaning of this condition is that the total “torque”
from the interface forcing unform phase rotation of the s±
gap parameters has to vanish. Using the relation w21/w12 =
λ21/λ12 = ν1/ν2 and Eq. (A25), we can rewrite this condition
as

2πT
∑

α,ω>0

ξ 2
α,ω

ξα

να�α0√
ω2 + �2

s0

�
φ

s0

γBα

= 0.

with �
φ

s0 = �s0 sin φ. Moreover, for the combination
ξ 2
α,ωνα/ξα , we obtain

ξ 2
α,ωνα

ξα

∝ Dανα

ξα

√
ω2 + |�α0|2

∝ 1

γα

√
ω2 + |�α0|2

,

which allows us to present the condition in the form

2πT
∑

α,ω>0

1

γ̃Bα

�α0 sin φ√
ω2 + |�α0|2

√
ω2 + �2

s0

= 0.

We immediately recognize that this condition is equivalent to
Eq. (A11) (vanishing of the total Josephson current flowing
through the interface). With this condition, Eq. (A25) for
�̃

φ

α,0 determines interface-induced phase shifts ϕα 	 1 of the
averaged order parameters with respect to zero-order phases
φ and φ − π , see Fig. 2. These phase shifts are defined by
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relation �̃
φ

α,0 = iϕα�α0. The same phase shifts appear in the
phenomenological frustrated Josephson junction model. As
the average phase shift (ϕ1 + ϕ2)/2 can be absorbed into φ,
we can set it zero and take ϕ1,2 = ±ϕ/2. From Eq. (A11),
taking into account the above condition, we derive

ϕ = − 2πT

d±w12|�20|
∑
ω>0

ξ 2
1,ω

/
ξ1√

ω2 + �2
s0

|�s0|
γB1

sin φ. (A29)

One can verify that this result does not change with the
switching of indices 1 ↔ 2 in the right hand side. Using the
expression for the partial Josephson energy Eq. (11), this result
can be rewritten as

ϕ = − EJ,1

d±ν1w12|�20||�10| sin φ. (A30)

For weak interband coupling, |λ12|,|λ21| 	 λ11,λ22, the pa-
rameter E12 = ν1w12|�20||�10| represents the interband en-
ergy and this result coincides with the result obtained within the
frustrated Josephson junction model in the case EJ,1 	 d±E12.
In this situation, w12 > 0 and ϕ < 0. However, in contrast
to this model, in a general situation, the phases ϕα do not
fully determine the energy of the s± superconductor. More-
over, it was argued that for the iron-based superconductors
the pairing is dominated by the interband coupling, i.e.,
the opposite inequality holds, |λ12|,|λ21| � λ11,λ22. In this
case, as λ12 < 0 and λ11λ22 − λ12λ21 < 0, we have w12 < 0
meaning that ϕ > 0. Figure 2 actually illustrates this situation.
Using the results presented in this Appendix, we derive
in the main text the amplitude of the sin 2φ term in the
Josephson current, which determines the width of the TRSB
state.
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